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Introduction 

The following four notions are well known to be strongly connected with each 
other: PAC (pseudo algebraically closed) fields, projective groups, the fields C(t), 
where C is an algebraically closed field of characteristic zero and free profinite 
groups. 

Indeed, the absolute Galois group G(K) of every PAC field K is projective. Con- 
versely, for every projective group G there exists a PAC field K such that G(K) = G. 
Also, a profinite group is projective if and only if it is isomorphic to a closed 
subgroup of  a free profinite group, and G(C(t)) is free. 

In our work [6] we generalize this situation and add the adjective 'real' to the first 
two results. Relying on a suitable definition of PRC (pseudo real closed) fields we 
define real projective groups and prove: I f  K is a PRC field, then G(K) is real pro- 
jective; i f  G is a real projective group, then there exists a PRC field K such that 
G(K)-~ G. 

The aim of the present note is to establish the 'real' analogue of the two remaining 
notions and results. We define real free groups and show that a profinite group is 
real projective if and only if it is isomorphic to a closed subgroup of a real free 
group. We also discuss some basic properties of real free groups and point out that, 
analogously to free profinite groups, every real free group is an inverse limit of 
finitely generated real free groups. Combining this observation with well-known 
results of Krull and Neukirch [7] and Schuppar [10] we deduce that for every real 
closed field R the group G(R(t)) is real free. 

* Partially supported by the fund for Basic Research administered by the Israel Academy of Sciences 
and Humanities. 
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1. Real free groups 

Free profinite groups over compact  spaces are introduced in [4, Proposit ion 1.3]. 
The appropriate concept in our context involves involutions. 

Definition 1.1. A profinite g roup /9  is said to be real f ree  if it contains disjoint closed 
subsets X and Y such that Xc_ Inv(/5); 1 e Y; and 

( , )  every continuous map ~p f rom X U  Y into a profinite group G, such t h a t  
tp(x)2 = 1 for every x e X  and ¢~(1)= 1, extends to a unique homomorphism o f / 5  in- 

to G. 
The pair of  Boolean spaces (X, Y) is said to be a basis of  15. 

It may be noted tha t /5  is a free profinite product in the sense of  Gildenhuys-Ribes 
[5], where the underlying pointed topological space is X EI Y, and Ax = { 1, x} = 
Z/22;' for every x e X and Ay = ( y}-~ 7? for every y ~ Y -  { 1}. Nevertheless the above 
direct definition simplifies the derivation of  the properties of  real free groups needed 
in the sequel. 

It is easy to see that  the definition of  real free groups does no change, if we write 
'finite '  instead of  'profinite '  in ( . ) ;  we shall often use this modified version of 

Definition 1.1. 
In order to construct real free groups, let X and Y be two Boolean spaces and 

let e be a distinguished point of  Y. Consider the Boolean space Z = X E I  Y (such 
that  X and Y are disjoint closed-open subspaces of  Z)  and let D be the free discrete 
group on the set Z. Denote by ~ / t h e  family of  normal  subgroups N of  D of  finite 
index such that e ~ N and x 2 e N for every x e X and such that Z n d N  is open in Z 
for  every d e  D. L e t / 5  = ILm D / N ,  where N ranges over •,  be the corresponding 
completion of  D and f : D ~ / 5  the-natural  completion map.  Its restriction i to Z is 
clearly continuous. 

Lemma 1.2. The map i : Z - , / 5  satisfies: 
(a) i(e)= 1, i(x) 2= 1 f o r  every x e X ,  and /5=<i (Z ) ) .  
(b) Let  (oo : Z ~ G  be a continuous map into a f in i te  group G such that q~o(e) = 1 

and (00(x) 2= 1 f o r  every x e X .  Then there exists a unique continuous homomor-  
ph ism tp :/5 ~ G such that ~Po = ¢P o i. 

(c) Let  z, z" be distinct elements o f  Z; then i(z) is not  conjugate to i(z')  in/5.  

Proof. (a) and (b) are clear. 
(c) W.l .o.g.  assume z:ge. There exists a closed-open subset U of Z such that 

z e U and z', e ~ U. The continuous map tPo: Z ~ { _+ 1 }, given by tp0(U) = - 1 and 
~ o ( Z - U )  = 1, defines, by (b), a homomorphism ¢ : / 5 - - ,  { + 1 } such that ~p(i(z))= 
- 1  and ¢(i(z ' ) )= 1. Thus i(z) is not conjugate to i(z').  [] 

Lemma 1.3. Le t  X and Y be two disjoint Boolean spaces and e a distinguished point 
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of  Y.- Then there exists a unique real free group 1)(X, Y, e) with the basis (X, Y) such 
that e coincides with the unit element o f  19(X, Y, e). Moreover: 

(a) the set X U  Y (topologically) generates 1)(X, Y, e); 
(b) let z, z'  e X U Y; then z is conjugate to z' i f  and only i f  z = z'. 

Proof. The uniqueness o f / ) (X ,  Y, e) (up to a unique isomorphism) is clear. To 
establish its existence consider the construction discussed in Lemma 1.2 and put 
/)(X, Y, e) =/) .  The map i : Z ~ / )  is injective, by 1.2(c), hence a homeomorphism of 
Z onto i(Z). Thus we may assume that Z is a closed subset o f / 5  and i is the in- 
clusion. By 1.2(a) we have e=  1, a n d / ) = ( Z ) .  If x ~ X ,  then x:/:e= 1, hence x is an 
involution o f / ) ,  by 1.2(a). Property (*) of Definition 1.1 is 1.2(b), and (b) of our 
Lemma is 1.2(c). [] 

Examples o f  real free groups. In most of our applications the Boolean space Y is 
the one-point-compactification Y= S t9 {e} of a discrete space S. In such a case we 
write/)(X, S) instead of / ) (X,  Y, e). 

(a)/9(0, Y, e) is precisely the free profinite group/~(Y, e) generated by the pointed 
Boolean space (Y,e) [4, Proposition 1.3]. In particular,/9(0, S) is the (restricted) 
free group on a set S. 

(b) Let X and S be finite sets of  k and I elements, respectively. Then/5(X, S) is 
the free product/gk, t (in the category of profinite groups) of k copies of Z/2Z and 
l copies of ;~ (it has been denoted as/)k,k÷l and studied in [6, Section 6]). 

2. The rank of real free groups 

Recall that the rank of a profinite group G is the least cardinal of a set of 
(topological) generators of G converging to 1 (Ribes [9, Definition 6.7]). 

Lemma 2.1. The real free group on a basis (X, Y) is finitely generated i f  and only 
if both X and Y are finite, in which case its rank is IX I + t Y [ - 1. 

Proof. The real free g roup / )  on a basis (X, Y) is generated by X U ( Y -  {1}) hence 
rank( / ) )_<[Xl+ lY[ -1 .  Thus it suffices to show for every n~llq that if 
IX t:)Y[ _>n+ 1, then rank(/9)_>n. Now, there exist disjoint closed-open subsets 
II0, II1, ..., Vn of Z such that Z =  VoU ... U Vn, and 1 e Vo. Let el, ..., e~ generate the 
direct product C of n copies of Z/2Z.  Then the map t p : Z ~ C ,  given by <p(V/) = ei, 
for i= 1, . . . ,n  and ¢(Vo)= 1, extends to an ep imorph i sm/5~C.  This implies that 
r ank(~)_  rank(C) = n. [] 

This characterization may be generalized as follows. Recall that the weight of a 
topological space is the least cardinality of a base for its topology. Thus the weight 
of a finite Boolean space is equal to the number of its elements. The weight of an 
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infinite Boolean space is equal to the cardinality of  the family of its closed-open 
subsets (since every closed-open subset is compact and hence a finite union of basic 
sets). The weight of  an infinite profinite group G is therefore equal to the cardinality 
of the family ~ / o f  its open normal subgroups. In particular, if G is not finitely 
generated, then weight(G) = rank(G). Indeed, let A c_ G be a set of generators con- 
verging to 1, of the least (infinite) cardinality. Then A is a discrete subspace of G, 
hence clearly IAI _<weight(G). Conversely, for every finite subset S of A we have 
I { N • K ] A - N = S } I < _ I % ,  hence 

weight(G) = -< I { s c A I s is finite} I = I al  

Lemma 2.2. Let D be a real free group and let (X, Y) be its basis. Then 

rank(D) + 1 = weight(X O Y). 

Proof.  By Lemma 2.1 we may assume that Z = X U Y is infinite, whence/ )  is not 
finitely generated; we want to show that rank(D)= weight(Z). 

As Z c_ D, we have: weight(Z)_<weight(D)=rank(D). Conversely, let J / b e  the 
family of continuous maps from Z into finite groups and let ~ be the family of con- 
tinuous epimorphisms from D onto finite groups. Then 

rank(D) = I { N < D  IN is open in D}l-<lel ,  

and I ¢ I - I j I, since the mapping from ~ to ~ ,  defined by restriction of functions 
to Z, is injective, since D = ( Z ) .  Let ~ be the family of finite collections of dosed- 
open subsets of  Z. Every f :  Z ~ G  in ~ defines an element of ~, namely 
{ f - l ( g ) l g • G  }. The map from de' into ~ defined in this manner has countable 
fibers (since there are countably many finite groups), hence [~l___l~0[[~l= [~[.  
Clearly I ~ [ = weight(Z). Thus rank(D)_  weight(Z). [] 

3. Inverse limits of  finitely generated real free groups 

We show that every real free group D(X, Y, e) is an inverse limit of finitely 
generated real free groups. 

Let Z = X U  Y. Recall that a partition Zo of Z is a finite collection Z0= 
{B1, . . . ,Bn}  of disjoint nonempty closed-open subsets of Z such that Z =  
B1U--- U Bn. Furthermore, a partition ZI is said to be finer than Z0 if for every 
V 'e  Z~ there exists a Ve Z0 such that V'c_ V. An (X, Y)-partition is simply a parti- 
tion of Z finer than the partition {X, Y}. 

Let ~ = { z i l i e I }  be a family of (X, Y)-partitions. To every i e I  there cor- 
responds a continuous surjection Pi : Z-'*Zi, defined by: Pi(Z) = V if z • V, for every 
z e Z  and every VeZi .  Let Xi=pi(X),  Yi=pi(Y) and ei=Pi(e); then Zi=XiIJYi  
and the map Pi extends to a unique epimorphism Pi:D(X,  Y, e)--* D(Xi, Yi, ei). If 
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Zj e ~ is finer than  Z i - in which case we write j >_ i - then there exists a unique 

surjection Pji : Zj-~ Zi such that  Pji o pj =Pi. In particular p ( X j ) = X  i, p(Yj)= Yi and 
Pyi(ej) =ei, so Pji extends to a unique epimorphism Pji :/)(Xj, Yj, ej)-}l)(Xi, Yi, ei); 
moreover, Pji o pj =Pi, by the universal property o f / ) ( X ,  Y, e). 

In this no ta t ion  we may state: 

Proposition 3.1. The group D(X, Y, e) is an inverse limit o f  finitely generated real 
free groups. More specifically, let ~ = {Zi[ i ~ I} be a family o f  (X, Y)-partitions 
such that for  every partition Z o o f  X U Y there exists a Zi ~ ~ finer than Z o. Then 

defines an inverse system (JD(Xi,  Yi, ei),pji)i,  j e l  and a compatible family o f  
epimorphisms pi : :D(X, Y, e) ~ lS(Xi, Yi, ei), i e L These induce an isomorphism 
p" 19(X, Y, e) ~ ILmie I JD(Xi, Yi, ei). 

Proof. The map p is surjective, since { Pi} are surjective. We have to show that  p 
is injective (i.e., ~ i~1Ker (p i )=  1). Denote /5  =/5(X, Y, e), let N be an open normal 
subgroup o f / 5  and 7t : / 5 - ~ D / N  the quotient map. By assumption there exists an 
i ~ I  such that  Z i is finer than the partition {uNNZ]ael~, t~NrlZ:/=fl}  of 
Z = X D  Y. By the universal property of  D(X i, Yi, el), there exists a homomorphism 

7[i" f f )(Xi ,  Yi, el) - - } I ) / N  such that  ni o Pi = 7t; hence ~ Ker(pi) C Ker(lt) = N. [] 

Corolary 3.2. The set X is a complete system o f  representatives o f  conjugacy classes 
of  involutions in 1)= 15(X, Y, e). For every involution e o f  15 we have 

{I,E}. 

Proof. If  X U Y is finite, then our corollary is a reformulation of  Proposi t ion 6.1 

of [6]. 
The general case follows from the finite case and from Proposi t ion 3.1 by a 

routine compactness argument.  Use also Lemma 1.3(b). [] 

We recall [6, Section 7] that  a profinite group G is real projective if: 
(a) Inv(G) is closed in G. 
(b) Let a : B - ~ A  be an epimorphism of  finite groups and let <p:G ~ A  be a 

homomorphism such that  for every t~ ~ Inv(G) - Ker(<p) there exists an e ~ Inv B for 
which a(e) = tp(b). Then there exists a homomorphism y : G --}B such that  a o y = f0. 

Corollary 3.3. The group D(X, Y, e) is real projective. 

Proof. Let G =I~(X, Y, e). By Corollary 3.2 the set Inv(G) is the image of  the com- 
pact set X × G under the map (x, u ) ~ x  a, hence compact. Let a and tp be as in (b) 
above. By assumption there exists a section d:  A ~ B  of  a such that [0 o ~p(x)] 2 = 1 
for evey x ~ X .  The restriction of  0 o ~o to X U Y can be extended to a unique 
homomorphism y : G -~B. We have a o y = q~, since 
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resx u l" a o ~, = resx u r a o d o q7 = resx u r ~P. [] 

Propos i t ion  3.4. Let D(X, Y, e) be a real free group and let X', Y'  be closed subsets 
o f  X, Y, respectively, such that 1 =e~  Y'. Then the closed subgroup <X'U Y') of 
D(X: Y, e) is real free with the basis (X', Y'). 

Proof .  Denote Z = X U  Y and Z ' = X ' U  Y'. Let ~0 be a continuous map from Z'  into 
a finite group G such that  tp(x) 2= tp(e)= 1 for every x e X' .  It suffices to show that 

extends to a continuous map ¢ / : Z - ~ G  such that  ¢/(x)2 = 1 for every x e X .  In- 
deed, ¢/extends to a homomorphism ~, : / ) (X,  Y, e) ~ G and is restriction to (Z ' )  ex- 
tends q~; the extension of  q~ to ( Z ' )  is of  course unique. Thus 

(Z ' )  =D(X',  Y', e)). 

The Boolean space Z possesses a basis consisting of  closed-open subsets. Since Z' 
inherits its topology from Z, there exists an (X, Y)-partition Z0 of  Z such that for 
every VeZo  either v n z ' = o  or v n z ' c q ~ - l ( g )  for a unique g ' e G .  Define 

: Z-*G as follows: Let VeZo; if  v n z ' c _  ~p-l(g), let ~,(z) = g  and if  v n z ' = o ,  let 
~,(z) = 1, for every z e V. Then ¢ /has  the required property. [] 

To deduce the next result we need a lemma, which is an easy corollary of  some 
of  the deeper theorems of  [6]. 

L e m m a  3.5. Let P and G be real projective groups. 
(a) There exists a closed system o f  representatives o f  the conjugacy classes of 

Inv(G). 
(b) L e t  a :  P ~ G be a continuous epimorphism and let X be a system of  represen- 

tatives of  the conjugacy classes of  Inv(P). I f  a maps X bijectively onto a system of 
representatives o f  the conjugacy classes o f  Inv(G), then there exists a continuous 
monomorphism ~, : G -* P such that a o ), = ida.  

Proof .  By [6, Proposi t ion 7.7] there exists an open subgroup G'  of  index _<2 in G 
such that  G ' n ( I n v  G) = 0  and G =(G, G',Inv G incl. G) is a projective Artin- 

Schreier structure. Thus (a) follows from [6, Corollary 9.2(i)]. 
Let P'=a- I (G) .  Then ( P : P ' ) _ < 2  and P ' O I n v ( P ) = 0 ,  since P ' n x = o .  Again, 

by [6, Proposi t ion 7.7] P = ( P , P ; I n v ( P )  ,P )  is a projective Artin-Schreier 
structure. Condit ion (b) implies that  a ( Inv(P) )=  Inv(G) and that  a may be viewed 
as a cover of Artin-Schreier structures. By the projectivity of  G there exists a mor- 
phism ~ : G ~ P such that  a o )p = idG. In particular there exists a continuous homo- 
morphism 7 : G ~ P  such that a o 7 = ida. [] 

Theorem 3.6. A profinite group G is real projective i f  and only i f  G is isomorphic 
to a closed subgroup o f  a real free group. 
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Proof. Let G be real projective. Choose a closed system X of representatives of the 
conjugacy classes of Inv(G) and let Y= G with e = 1. Let P=Ig(X, Y, e); the identity 
inclusions of X and Y into G extend to an epimorphism a : P ~ G. By Corollary 3.3 
and Lemma 3.5(b) there exists an embedding of G into P. 

Conversely, every real free group P is real projective, by Corollary 3.3. 
Therefore, by [6, Corollary 10.5], every closed subgroup of P is real projective. [] 

4. The absolute Galois group of •(t) 

Let R be a real closed field and F= R(t) the field of rational functions in one 
variable over R. The aim of this section is to show that the absolute Galois group 
of F is real free. This result relies on a characterization of G(F) found by Krull and 
Neukirch [7] in the case that R is the field of real numbers, and on a generalization 
of this characterization to an arbitrary real closed field R (Schuppar [10]). 

We need a few facts about the space X(F) of orderings of F. 
It is not difficult to show (see [8, Theorem 6.5] and [1, Corollary 9 and Proposi- 

tion 12]) that X(F) is a Boolean space under the Harrison topology given by the 
basis consisting of 

{ x ~ X ( F ) l t < x b }  where b~R,  (1) 

{x~ X( F) la <x t }  where a e R ,  (2) 

{x ~ X(F) [ a <x t <x b} where a < b e R. (3) 

It follows that for every partition X0 of X(F) there exists a partition X1 finer than 
X0, of the form 

{{x l t<xal} ,{x]al<xt<xa2} , . . . , {x lan<xt}} ,  where a l<. . .<an~R.  

Let us denote by x( + oo), x( - oo), x(a + ), x ( a -  ), where a e R, those orderings of 
F, for which t, - t, 1 / ( t -  a), 1 / (a -  t), respectively, is infinitely large with respect to 
R. 

Next, let us fix some notation concerning prime divisors of R(t)/R. These are of 
three types: 

(a) real primes, 1'~, of degree 1, one for each a ER, corresponding to the 
specialization t-~ a; 

(b) complex primes, pc, of degree 2, one for each c=  a +  bl/-S] -, with a, b e R and 
b>0,  corresponding to the specialization t ~ c ;  

(c) the prime 1'= of degree 1, which is infinite at t. 

Theorem 4.1. Let R be a real closed field and let t be a transcendental element over R. 
Denote by X the space o f  orderings o f  R(t) and let H= {a + bl/---1 ] a, b e R & b > 0}. 
Then G(R(t)) = D(X, H). 

Moreover, an isomorphism d :I)(X,H)-*G(R(t)) can be defined such that for  
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each a a R and b~ H the groups tg(x(a + ) ,x (a-) )  and tg(b) are the decomposition 
groups in G(R(t)) o f  primes lying over I'a and pb, respectively. 

Proof.  We show that G(R(t)) and 15(X, H) are inverse limits of isomorphic inverse 
systems of finitely generated profinite groups. 

Part A: The inverse sysem for  G(R(t)). 
For every finite subset S of R U H let R(t) s be the maximal normal extension of 

R(t) unramified at {pa[ a ~ R O H U  {00} - S} and denote G(S) = ~(R(t)s/R(t)). If 
S c_ S', then R(t) s c_R(t)s,, hence the restriction m a p  Ress,/s: (G(S')--'G(S) is an 
epimorphism. Thus (G(S), Ress,/s)s, s' is an inverse system and G(R(t))-- lim G(S). 

Part B: The inverse system for  D(X, H). 
Let Y be the one-point compactification of the discrete space H. With every finite 

subset S of R U H we associate an (X, Y)-partition in the following way. Let e(S) = 
Y -  (S A H )  and for each a ~ S n H l e t  y(S, a) = {a}. Then Y(S) = { y(S, a) [a ~ S AH} U 
{e(S)} is a partition of Y. If al<'"<ak  are the elements of SAR,  denote 
xo(S)={xeX[t<xa~}, xi(S)={x~X[ai<xt<xai+l} for i = l , . . . , k - 1  and 
xk(S)= {xeXIak<xt} .  Then X(S)= {x0(S),...,xk(S)} is a partition of X. The 
union X(S)UY(S)  is an (X,Y)-partition. Clearly, x(ai-)~Xi_l(S) and 
x(ai+)exi(S); if  a ~ S A H ,  then aey(S,a). Note that for every partition Z 0 of 
X O  Y there exists a set S such that X(S)U Y(S) is finer than Z0. 

If  S ~ S', then the partition X(S')t3 Y(S') is finer than X(S)O Y(S), hence there 
exists a canonical map 

Ps'/s : X(S')  -U Y(S ' )~  X(S)t:J Y(S) 

given by ps,/s(V') = V if  V'~ V. This map uniquely extends to an epimorphism 

Ps'/s : D(X(S'), Y(S'), e(S'))~ I~(X(S), Y(S), e(S)). 

By Proposition 3.1, we know that (D(X(S), Y(S),e(S)),ps,/s)s,s, is an inverse 
system and/5(X, H)  =- 1Lm D(X(Sk Y(S), e(S)). 

Thus our theorem follows from the following lemma. 

Lemma 4.2. For every finite subset S of  R EI H there exists an isomorphism 

t9 s : D(X(S), Y(S), e(S))~G(S) 

such that for every S c_ S' the following diagram commutes 

D(X(S'), Y(S'), aS')) 

Ps'/s 1 

1)(X(S), Y(S), e(S)) 

~ e 

, G ( S ' )  

Ress, s 

, G ( S )  
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Moreover, for each a = ai~ S n R, where 1 <_ i <_ k, and each b ~ S n H the groups 
d(xi-I(S), xi(S)) and O( y(S, b)) are the decomposition groups in G(S) o f  primes ly- 
ing over l~a and l~b, respectively. 

Proof of Lemma 4.2. Again,  we proceed by parts. 
Part C: Generators and relations for G(S). 
The group G(S) possesses a system of  generators {~(S), r(S, a) ia e S} with defin- 

ing relations (we omit the reference to S if no confusion arises): 

0 .2--. 1, (1) 

0.1:(ai)0. = ~'(al) -1"-- r (a  i_ l ) - l z ( a i ) - l r ( a i  _ 1)"" r(al),  (2) 

for 1 <_i<k, where al<".<a~c are the elements of  S A R  (see [7, Satz 2] and [10, 
Satz 3.1]). Moreover,  

r(a) e G(R(t, I f - l ) )  for all a ~ S, (3) 

(4) for each a ~ S there exists a prime of R(t)s lying over l'a such that its decom- 
position group in G(S) is ( r (a))  if a ~ S N H ,  and (r(ai),r(ai_l)...r(al)0.) if 
a = a i e S n R .  

It should be remarked that  Schuppar  does not include (3) in his account [10, Satz 
3.1] of  G(S). Nevertheless, this property can be easily attained using the method of  
his paper,  since it holds for R = [R (see [7, p. 206, line 3]) and can be elementarily 
expressed. 

Note that  if a system {0.; r'(a) la e S } of  generators of  G(S) satisfies relations (1) 
and (2), then these are defining relations for G(S). Indeed, the map 0.--,0.' and 
z ( a )~ r ' ( a )  for a e S extends to an endomorphism of G(S), which is necessarily an 
automorphism (see [9, p. 68]). 

Part D: The restriction map. 
Observe that if S c__ S'  and { 0., r(a) I a e S'  } satisfies (1)-(4), then Ress,/s r(a) = 1, 

for every a e S ' - S .  Indeed, let 1~ be the prime of  C(t)= R(t, If-S-f) lying over I~a. 
By (3) and (4) we know that  r(a, S') belongs to the decomposition group H <  
f#(R(t)s./C(t)) of a prime ~ of  R(t) s, lying over ~. But H is also the inertia group 
of ~ in fg(R(t)s,/C(t)), since t~ and have ~ have the same residue field. Therefore 
Ress,/s H =  { 1 }, since ~ is unramified in R(t)s. 

A slight modification of  the p roof  of  [7, Satz 3] shows that it is possible to choose 
for every S a system of generators {0.(S), r(S, a)[a ~ S} of G(S) that satisfies (1)-(4) 
and such that: 

(5) If  Sc_S', then the restriction map ReSs,/s:G(S')~G(S) is given by 
Ress,/s 0.(S') = 0.(S) and 

= f r(S, a) for a e S, 
Ress,/s ~'(S', a) 

1 for a e S ' - S .  

We assume in the sequel that  this has been done. 
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Part E: Construction o f  the isomorphism d s. 
Define ds : X(S) 13 Y(S)-~ G(S) by: 

Os(e )  = 1, 

ds(Y(a)) = r(a) for a E S I"1H, and 

~ s ( X i ) : T ( a i ) T ( a i _ l )  "'" Z(al)O" for O<_i<_k. 

Then for every S c_ S '  

Ress,/s o ds, = ds o Ps'/s (6) 

holds on X ( S ' ) U  Y(S'). Moreover,  by (1) and (2), ds(Xi)2= 1, for O<_i<_k. By the 
universal property of  free real groups the map ds uniquely extends to a homomor-  
phism such that  (6) holds on D(X(S'), Y(S'), e(S')) for all S c_ S'. Note that 

[~s (X i  - 1' X i )  : (z(ai)T(ai-1)"" r(al)tr, z(ai)z(ai_ 1)"" r(al)tr) 

= (~(a i ) ,  ~:(ai- 1) "'" r(al)tr) .  

To show that ds is an isomorphism we construct its inverse. Define CO: G ( S ) ~  
D(X(S), Y(S), e(S)) by 

co(a)=x0, 
Iy(a) if a e S f'l H,  

CO(r(a))= t.xixi-i if a = a i e S N R  and l <_i<_k. 

One easily checks that this is a good definition, since (1) and (2) are defining rela- 
tions for G(S). 

A direct computat ion shows that the restrictions of  COo ds and dsOco to 
X(S) U Y(S) and {tr, r(a) J a e S},  respectively, are identities. Hence CO o d = id and 
d o co = id, whence d is an isomorphism. []  
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